O.P.Code: 19EE0207 R19 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations May/June-2024
ELECTROMAGNETIC FIELDS

		ELECTROMAGNETIC FIELDS	116-2024		
		(Electrical and Electronics Engineering)			
1	Time: 3 Hours		Max. M	[arks	: 60
		(Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)			
		UNIT-I			
1		Point P and Q are located at (0,2,4) and (-3,1,5) calculated: (1). The Position	CO ₁	L3	12M
		vector P, (2). The distance vector from P and Q, (3). The distance between P			
		and Q and (4). A vector parallel to PQ with magnitude of 10.			
•		OR			
2		Express vector B in cartesian and cylindrical systems. Given $B=10/r$ ar + r cose a + ae. Find the B at (-3,4,0) and (5, $\pi/2$, -2)	CO1	L2	12M
		UNIT-II			
3		The Electric flux density is given as $D=(r/4)$ ar n C/m ² in free space. Calculate:	CO2	L3	12M
		The Electric field intensity at r=0.25 m, The total charge within a sphere of r=0.25 m		20	12111
		OR			
4	a	State and explain Coulomb's law indicating clearly the units of quantities in the equation of force?	CO2	L2	6M
	b	Two pint charges 1.5nC at $(0,0,0.1)$ and -1.5nC at $(0,0,-0.1)$ are in free space.	CO2	L3	6M
		Treat the two charges as a dipole at the origin and find the potential at $p(0.3,0,0.4)$	002	LS	OIVI
		UNIT-III			
5					
3		Explain the boundary conditions between conductor and free space?	CO ₃	L2	12M
6		OR			
U		Two parallel conducting disc are separated by distance 5 mm at z=0	CO ₃	L3	12M
		and z=5 mm. If V=0 and V=100 v at z=5 mm, find the charge			
		densities on the disc.			
		UNIT-IV			
7		Evaluate both sides of the stokes theorem for the filed H=6xy ax -3y2 ay A/m	CO4	L3	12M
		and the rectangular path around the region $2 < x < 5$, $-1 < y < 1$, $Z=0$. Let the			
		positive direction of ds be az.			
		OR			
8		Calculate the inductance of a 10 m length of coaxial cable filled with a material	CO4	L3	12M
		for which $\mu_r = 80$ and radii inner and outer conductors are 1 mm and 4 mm respectively.			
		UNIT-V			
9		Derive expressions for integral and point forms of poynting Theorem?	CO5	L3	12M
		OR			~=11I
10		An area of 0.65 m2 in the plane Z=0 encloses a filamentary conductor. Find the induced voltage if B= 0.05 cos 103 t (ay+az)/ $\sqrt{2}$ tesla.	CO5	L3	12M

*** END ***
